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AQstract. We have derived a closed form expression for the transveae Fourier transform 
G(O.0; Q) (or surface structure factor) of the surface spin-spin correlation function near 
a complete wetting transition fmm Landau theory, Whilst G(0,O; Q) contains isolated 
singularities (poles) in the complex wavevector plane it does not have a simple Ornstein- 
Zemike (02) form. Instead, the function exhibits two limiting oz-like behaviours character- 
istic of intrinsic and coherent capiltary-wave-like fluctuations depending on the value of the 
scaling variable QlHI-'P. We also discuss the decay of surface correlations in real space 
and identify the appropriate singular (long-ranged) contribution. In contrast to the second- 
moment correlation length the true correlation length at the wall &verge as 1Hl-V in the 
limit of complete wetting. 

In developing the modern theory of critical phenomena much effort has been invested 
in understanding the asymptotic decay of order-parameter correlations. For isotropic 
homogeneous (bulk) systems with scalar order-parameter m(r) (and short-ranged 
forces) it is believed that the truncated (connected) correlation function 
G(r1,rz) = (m(rl)m(rz)) - (m(r j ) )  ( M ( Y Z ) )  generally decays like G ( q ,  r ~ )  -r;id-')'' 
e-'td5 for distances rl2=1rI -r21 >>e corresponding to the true bulk correlation length 
[I]. This asymptotic decay is consistent with the classical Omstein-Zemike (02) theory 
of density fluctuations in simple fluids [2]. According to the oz theory the Fourier 
transform of G(r,, rz) (or structure factor) b(k) has the simple form G(k) = B(0) 
(1 + czp+ O(k4))-' where cb is the oz or second- moment^ correlation length. Within 
the oz approximation the susceptibility diverges like G(0) - 5:. oz theory is known to 
break down for simple (king-like) bulk fluid systems in two cases: (a) In the vicinity 
of the critical point G(k) has the scaling form b(k) =k-"-"A(kt", Ht-*) where Hand 
f are the 'magnetic' and 'temperature'4ke scaling fields and v and A are the correlation 
length and gap exponents. Such deviations from oz theory are here related to non-zero 
values of Fisher's correlation function exponent q for dimensions d e 4  131. (b) In 
two dimensions the correlation function decays according to the Kadanoff-Wu result 
G(vl, rz) -rT; e-'1d5 [4] for rI2/c+w, H=O and subcritical temperatures. The poles in 
the corresponding structure factor are not isolated, which may be related to pronounced 
random-walk-like fluctuations of the contours describing the elementary 'bubble-like' 
excitations [SI. 

In the present paper we point out that the detailed form of the Fourier transform 
of the pair correlation function at a complete wetting phase transition does not exhibit 
simple oz behaviour when both particles are a t  the wall. Recall that nonlinear reuormal- 
ization group (RG) studies of effective interfacial Hamiltonian models of wetting 
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transitions imply that the exponent analogous to 17 is zero in all dimensions [6]. How- 
ever, this does not mean that the detailed wavevector dependence of the appropriate 
structure factor is described by a simple Lorentzian function characteristic of oz behav- 
iour. For systems with short-ranged forces (on which we shall concentrate), d = 3  corre- 
sponds to the marginal dimensionality. While RG studies indicate that the values of the 
critical exponents which characterize the transition are not altered from their mean- 
field (MF) values, the relationship between intrinsic and fluctuation-related effects is 
extremely subtle. We discuss the physical interpretation of the detailed form of the 
structure factor and show how the asymptotic decay of G(r1, r2) at the wall is related 
to the locations of the poles and zeros of the structure factor in the complex wavevector 
plane. 

The starting point for our analysis is the Landau-Ginzburg-Wilson (LOW) free- 
energy functional [7] 
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F[m(r)l=Jdr {t(Vm(r))'+9(m(r))+6(z)8l(m(r))} (1) 

appropriate for describing fluid adsorption (for systems with short-ranged forces) at a 
planar wall situated in the plane z=O. Here we shall adopt the familiar magnetic 
language [7] even though our analysis is appropriate to a continuum (fluid) system. The 
bulk free-energy density function 9 (m) has a standard double-well form at subcritical 
temperatures but need not be specified further. The surface potential $l(ml) acts on 
the surface layer magnetization m, =m(r)l.-o and is assumed to have theusual quadratic 
form ~ l ( m l ) = c m : / 2 - h l m , .  The surface phase diagram of (1) is well understood and 
shows first-order and second-order wetting transitions [7]. We shall focus on the case 
where in the limit of the bulk 'magnetic' field H-0- a layer of up-spins (with bulk 
magnetization m. > 0) completely wets the surface-down-spin (p) interface. In this 
limit, the (reduced) adsorption FzJ: (m(z) -'m(co))/(m,-mp) diverges like 
P-IHI-" with pr=O(ln). Associated with this growth of a wettin? layer is the diver- 
gence of a transverse correlation length 511 -1HI-T [SI with vy = 2 .  In the approach 
to complete wetting the singular part of the excess grand potential per unit area 
ZWp - (C, + BaB) vanishes like Xs'"g- H InlHl at the MF level. Here Cwp refers to the 
wall-P phase excess grand potential per unit area, Z,. refers to the value of the potential 
for H=O+ (referred to as the non-critical interface) and Z a p  is the free interfacial tension 
of the (isotropic) continuum up interface. As stated earlier the values of the critical 
exponents are not altered by fluctuations in d= 3. Consequently the MF theory for the 
surface correlations is, we believe, a realistic model for the fluctuations. Let us write 
the truncated correlation function as G(zI, z2 ; Rlz) with z, the normal distance from 
the wall and RI2 the parallel displacement. First let us follow earlier studies [9, IO] 
and define the moments of the correlation function by the expansion of the Fourier 
transform 

&, z2; Q)= dR12e'QR'zG(zl,z2;R12) J 
m 

= c Q ~ G & ~ ,  2') 
" - 0  

where Q=lQl. Note that we expect the radius of convergence of this expansion to 
vanish in the limit of complete wetting. 
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For the LGW model functional the oz integral equation defining G(rl , rz) reduces 
to the differential equation [ 11 ] 

C-V:, + b"(m(rd) )G(r~,  rd  =WVI -4. (3) 

From (2) and (3) it follows that the moment G,(zl, ZZ) satisfies a linear differential 
equation of order 2n+2:  

L;+'G2n(zI, ZZ) = -S(ZI - ZZ) (4) 

where Lt = J:, - 4 "(m(rJ).  
Here we seek to solve for the moments G>(zI, zz) for an arbitrary bulk free-enerm 

#(m(r)) .  Previous studies have concentrated only on the first two moments [9, IO]. The 
properties of the higher moments must be elucidated, however, in order that the expan- 
sion (2b) may be inverted to give G(zl, zz ; Rlz) .  First we recall [ 121 that Go(zl, 22) is 
given by 

where O(x) is the Heaviside step function and " (2 )  = dm(z)/dz. The result (5 )  is consist- 
ent with the surface susceptibility sum rule 

(64 

The function Ga(zt, 22) is the simplest of the expressions for the moments of G. The 
exact MF expressions for the higher moments G,(z,, zz) rapidly become complicated 
as n increases. However, one might reasonably expect that the behaviour of &zl, z z ;  Q) 
exhibits characteristic wavevector scaling for (a) zI , z z - r ,  near the u p  interface, and 
(b) ZI =z2=0, exactly at the wall. 

The behaviour of b(zl, z2 ; Q) near the a,B interface is rather well understood from 
previous studies [IO]. In this region the integrals in ( 5 )  dominate the expression for 
G0(zl, z2). In fact it is straightforward to show that for large I: and n 2 0 

where g i=  #)'+ tiz)' and 

(74 e$"'= =a, p*= % 5 6  

m;(cmi-mr) (me-%)lHI' 

Clearly, (7) implies that c(zl, z2 ; Q) x 4 ( z 1 ,  z2)/( 1 +tie2) for z I ,  zz-l?, consistent 
with simple oz theory. We now turn our attention to the behaviour of G(0,O; Q). 
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From (5) 
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and it follows that [13] 

where Z ~ T  is the total excess grand potential per unit area. To solve for G4(0, 0) ,  
G6(0, 0 )  and higher moments we note that the solution to (4) may be writtenjas 

When combined with the results (5 )  and (9) this allows the calculation of G4(0, 0) in 
terms of Gz(O, z) and Go(O, z). By repeating this procedure we can generate G,(O, 0) 
for arbitrary n. For example, 

Let us first consider the non-critidal wall-U (wa) interface in the limit H-+O+. The 
correlation function does not exhibit any singular behaviour and analysis shows that 

where the (non-critical) wall-U phase surface second-moment correlation length satis- 
fies &2: &2(1 +C&I away from the hulk critical temperature. 

Now let us consider the approach to complete wetting H+O- corresponding to the 
wall-p (wp) interface. In this limit the surface magnetization ml (and its derivatives) 
approach the same value as from the H+O+ side. Consequently the behaviour of Go(O, 0) 
is very similar for H+O*. The behaviour of Gz(O, 0) is more intriguing. As has been 
noted in earlier studies [9], in the limit of complete wetting G2(0, 0) retains knowledge 
of&p arising from the t e m  GOT. No such term arises in the limit H-0’ for the wall-a 
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interface. The higher moments diverge as H-0-. The dominant singular behaviour of 
G4(0, 0) and Gs(0,O) is described by 

and 

(15) 
- ( ~ ~ O T - d I ( m , ) ) ’ - 2 ~ T O ~ - d l )  zap  #)’- zaP sr“‘ 

GdO, O)= m;2(cm; -m;)4 m:(cmi -my)’ (cm! -my)” 

In fact, it is possible to show that the power law divergence of G&+2(0,0) is related to 
that of Gb(O, 0), G,-,(O, O), etc, by 

The presence of terms related to c:) and S;f) indicates that c(0,O; Q) is sensitive to 
the long-wavelength fluctuations at complete wetting. The recursion relation (16) is 
clearly much more complicated than (7), which, recall, is indicative of oz behaviour. 
After some patient inspection it is possible to show that the series (16) is generated by 
the following closed-form non-oz expression: 

Equation (17) is the main result of this paper and we discuss some of its features. 
Firstly it can be seen that’the function shows two different limiting oz behaviours. For 
finite Q and #)+cc the expression reduces to (13) (to order e*) pertinent to the wall- 
a interface. This is clearly the correct physical requirement-in the limit of complete 
wetting the properties of local expectation values. near the wall must be the same as 
that of the wall-a interface. On the other hand, for Q#’-O we find 

so that extremely long-wavelength fluctuations are controlled by the total wall-p surface 
tension. This is indicative of the coherent manifestation of the capillary wave fluctuations 
in the extreme limit Q#)+O [13]. This may be understood as follows: consider a 
surface of fixed magnetization m’ whose value is very close to m, . The equilibrium 
position of this surface is z= 0. If this surface is constrained [I41 to be non-planar close 
to z=O we may ask what profile m(r) minimizes the free-energy functional (I). If the 
position z(y) of the surface contains Fourier modes Q with wavelengths IQ]-’>>#) 
the profile which minimizes (I)  subject to the constraint corresponds to a rigid shift of 
the equilibrium planar profile. The associated freeenergy change clearly involves the 
total surface tension. If, on the other hand, z(y) contains only modes with wavelengths 
I Ql-’ <<sf) the perturbation in m(r) relative to the planar equilibrium profile is localized 
to the wall. Consequently the surface tension Zap does not contribute. 

To complete our analysis we discuss the decay of Gwp(O, 0; R), which is sensitive 
to the behaviour of cwP(O, 0; Q) in the complex wavevector plane. The denominator 

, 
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appearing in (17) may be factorized and shows that ewP(O, 0; Q) has conjugate poles 
at 
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From the isolated poles near Q =  iitwh it follows that d"(0,O; R) contains a 'non- 
singular' contribution which decays with a length scale characteristic of the wall-a 
interface. The poles near Q= +i/@ are more interesting. Note that these singularities 
in e are asymptotically close to the zeros of e which occur at Q = ai/{$. The presence 
of the zeros are rather important for dimensionality d- I =2. Recall that the standard 
oz theory of correlations near hulk ,cliticality breaks down in d= 2 because it predicts 
an unbounded logarithmic growth of the function at the critical point. For the present 
problem we note that the presence of the zeros near the isolated singularities means 
that the amplitude of the resulting singular contributions to G vanishes as 5,+00. In 
fact, for general dimensionality d>3 we find that G contains a singular contrihution 

with A(0) finite and x ( x ) - + ~ - ( ~ - ~ ) ~ e - ~  for x-+00. In two dimensions the relationship 
between 'intrinsic' and 'fluctuation-induced' effects in e(0,O; Q) may be different. For 
this dimensionality the nature of G at complete wetting is not known for any truly 
microscopic Hamiltonian although the results from standard capillary wave theory are 
known to exhibit scaling behaviour [HI. 

Comparing (17) and (19) clearly illustrates the non-oz character of the surface 
correlation function. From (17) we note that the second moment surface correlation 
length retains knowledge of the unbinding interface but is finite in the limit of complete 
wetting. This length scale is not the same as the corresponding wall-a phase quantity 
and diverges as the critical wetting temperature is approached from above. This is 
related to the behaviour of the surface susceptibility [16]. In contrast, the asymptotic 
decay of correlations does exhibit a pseudo-two-dimensional oz-like decay and the true 
surface correlation length diverges with critical exponent vy. 

In conclusion, we have derived a closed form expression for the structure factor 
e(0,O; Q) at complete wetting using an MF theory valid for d b 3 .  The structure factor 
shows the presence of both intrinsic and fluctuation-related coherent effects depending 
on the value of the scaling variable Q1HI-T. The asymptotic real space decay of 
G(0,O; R) reflects the presence of the isolated singularity and (nearby) zeros of 
e(0,O; Q )  in the complex wavevector plane. The singular contribution to G(0,O; R) 
(19) emerges despite the fact that the structure factor e(0,O; Q) does not contain a 
simple oz-like Lorentzian singularity (see (7)) as has been previously suggested [17]. 

GS'"g(0, 0; R) ,mi25(1)25P)-~R-(d-3)11(R/5dZ)) (1% 

Acknowledgments 

AOP would like to thank R Evans and J R Henderson for many interesting discussions 
and explanations. This work was supported by the SERC. 

Referenfes 

[ I ]  Fisher M E 1962 Physico 28 172 
[Z] Omstein L S and Zemike F 1914 Proc. Sect Sci. K. Med. dkad. Wet. 17 793 



Non-Ovnstein-Zernike surface structure 

[31 Fisher M E 1964 3. Moth. Phys. 5 944 
[41 Wu T T 1966 Phys. Rev. 149 380 
[51 Abraham D B 1983 Phys. Re”. Lett. M 291 

Fisher M E 1983 3. Stat. Phys. 34 667 
[61 Lipowsky Rand Fisher M E 1987 P/fys. Rev. B 36 2126 
[7] Nakanishi H and Fisher M E 1982 Phys. Rev. Lett. 49 1565 
[SI Tarazona P and Evans R 1982 Mol. Pkys. 47 1033 
191 Parry A 0 and Evans R 1988 Mol. Phys. 65 455 
[IO] Parry A 0 and Evans R 1993 Mol. Phys. 78 1527 
[Ill Evans R 1979 Adv. Phys. 28 I43 
[U] Lipowsky R and Speth W 1983 Phys. Rev. B 28 3983 
1131 Parry A 0 1993 3. Pliys. A: Math. Gen. 26 L667 
[I41 Fisher M E and Jin A J 1991 Phys. Rev. B 44 1430 
[I51 Parry A 0 1991 3. Phys. A: Math. Gen. 24 L699 
1161 Parry A 0, Evans R and Binder K 1991 Phys. Rev. B 43 12, 535 
[I71 Henderson J R 1986 Mol. Pkys. 59 1049 

1883 


